
The ServiceCEO API

Web Service Developer’s Guide
Last Updated 7/2008

For ServiceCEO 6.2

Copyright 2008 by Insight Direct, Inc.

All rights reserved. No part of this book may be reproduced or copied in any form or by any means—
graphic, electronic, or mechanic—without the written permission of Insight Direct, Inc.

 Table of Contents

Overview...1

Target Audience...1

Development System Requirements..1

System Components...1

The ServiceCEO API Web Service...3

Abilities and Limitations..3

Entities and Operations..3

Getting Started..4

Installing ServiceCEO ..4

Installing and Configuring the ServiceCEO API Web Service..5

The Web.Config File...5

Build Your First Application..6

Creating a Visual Studio project with a Web Reference to the ServiceCEO API Web Service..............6

Writing the Code...9

ServiceCEO API Web Service Concepts..11

“Classic” vs. “API”..11

DataItem Base Class..11

Top-Level DataItems vs. Owned DataItems...11

References..12

Login..12

Querying the ServiceCEO API Web Service...12

Date Range Query...13

Example..13

New, Save, Modify and Delete Operations..14

Setting Up and Executing an Operation..15

Operation Results..15

Working With DbKey..16

Comparisons..17

Multi-Keys..17

Jobs..17

Schedules...17

Estimates..17

Job Status ..18

Telephone Types..18

NewLines...18

Backward Compatibility..18

Appendix A: Recommended Reading..19

Appendix B: Sample Code - Job Creation..20

Appendix C: Deployment Considerations..23

Data Security Considerations...23

Appendix D: Getting Help..23

Appendix E: ServiceCEO 6.2...24

Custom Fields..24

Job Contacts...24

Customer Alerts...24

Appendix C: Deployment Considerations

Overview
The ServiceCEO Application Programming Interface (API) is designed to give developers programmatic
access to Customers, Jobs, Estimates, and Tasks. This document is designed to provide you with
everything you’ll need to start using the API web service.

Target Audience
This document is intended for a developer who is familiar with ServiceCEO, and has some experience with
Microsoft® Visual Basic.NET or C#. Experience consuming web services is preferred but not required.

Development System Requirements
To either develop new applications that use the API, or to run the sample applications (that are included as
part of the ServiceCEO API package), you need to install the following items:

Any edition of Microsoft Visual Studio® 2005, Visual Basic.NET Express, or Visual C# Express.
For the web application sample, you can use either Microsoft Visual Studio 2005 or Visual Web
Developer 2005 Express Edition. Express products are currently available for download free of
charge from the Microsoft website at: http://msdn.microsoft.com/vstudio/express/

Note:
Unless otherwise stated, all instructions in this document are for the full version of Visual
Studio 2005. However, most menus and options should have similarly-named counterparts in
Express versions.

A copy of your database. When developing applications and performing sample executions against
the API, use a copy of your data that is not being used to run your live business. Do NOT execute
any sample or application against your live database until you have thoroughly tested it on
an off-line copy.

ServiceCEO version 6.1+. Although the ServiceCEO client is not required on your development
machine, it will come in handy for checking the results of commands issued via the web service.

o The API can only access databases which have been upgraded to version 6.1 or newer. If
your production environment is on an earlier version, you will still need to install 6.1 on
your development machine in order to upgrade the database.

IIS version 5 and above.

Note:
IIS must be installed before either the .NET Framework 2.0 or Visual Studio.

System Components
The following three components are required for proper use of the ServiceCEO API Web Service:

1. Web Service. An ASP.NET 2.0 web service being hosted by either the Internet Information Server
(IIS) or, for debugging purposes, inside Visual Studio 2005 or Visual Web Developer.

1

Appendix E: ServiceCEO 6.2

2. Database Server. SQL Server hosting the ServiceCEO 6.1 database. This is the same database
engine which provides data to the ServiceCEO 6.1 client application; no additional modifications
are required for use with the API.

3. Application. Your application or a sample application

For development and sample purposes, these three components will probably reside on a single computer.
All instructions in this document assume this configuration unless otherwise noted.

For production environments, these components may be distributed to multiple computers. See the Data
Security Considerations section for important details and security considerations.

2

Appendix C: Deployment Considerations

The ServiceCEO API Web Service
The ServiceCEO API Web Service provides programmatic access to your ServiceCEO data using the
language and platform of your choice. The current version of the API allows you to access most aspects of
ServiceCEO’s Customers, Jobs, Estimates and Tasks.

The ServiceCEO API Web Service can be used to perform many actions, including:

Integrating ServiceCEO with your .NET application.

Delivering customer and job data to your users’ desktops.

Creating intranet web applications that allow access to ServiceCEO data by authorized users from
anywhere in the world.

Building middleware to integrate ServiceCEO with sales force automation systems (such as
Salesforce.com, PeopleSoft and Siebel).

Sending customer and job information to accounting packages.

Developing middleware to integrate ServiceCEO with Microsoft Office®.

Abilities and Limitations
The ServiceCEO API comes from a new code base and as such has not been fully modeled to cover
ServiceCEO’s vast functionality. The API will allow you to query, update and create new: Customers, Jobs,
Estimates, and Tasks. Changing the status of a Job, Estimate or Task and the editing and creation of
Schedules are currently not supported within the API.

Entities and Operations
There are two main pieces to the ServiceCEO API that developers will need to interact with in order to
accomplish their goals. They are Entities and Operations. Below is a brief explanation of the two, through
out the document each will be covered in greater detail.

Entity: The ServiceCEO API Web Service interacts with your applications with objects. An object is a
programmatic entity that holds a particular chunk of your ServiceCEO data. For example the API has a
Customer entity that has a number of properties. These properties contain all the fields for a Customer
that you see in ServiceCEO.

Operation: An operation acts on an input object and returns an output object containing any changes. For
example to save a new or existing customer object you have somehow altered to the ServiceCEO database
you would use the CustomerSaveOperation. The input of this operation would be the Customer
object and the output would contain a result (success or failure), the Customer object and any failure
messages.

Each Entity and Operation is describe in detail inside the ServiceCEO API WebService.chm file included
with the API. Please not that not all Entities and Operations documented in this file are available for use in
the API Web Service.

3

Appendix E: ServiceCEO 6.2

Getting Started
This section covers how to get the ServiceCEO API Web Service up and running in the shortest possible
time. Please perform any development on a machine specifically delegated for the API development. We
suggest that you follow the steps in this order:

1. Setup your development environment:

A. Install IIS version 5.0 or greater, if not already installed

B. Install the development tools of choice. Typically, this is Visual Studio Express or Microsoft
Visual Studio 2005

2. Setup ServiceCEO applications and the ServiceCEO API Web Service

A. Install 6.1 on a stand-alone development machine

B. Install and configure the ServiceCEO API Web Service, including the web.config file

C. Install the samples

D. Build your first application

a. Creating a Visual Studio project with a web reference to the ServiceCEO API Web
Service

b. Writing the Code

Installing ServiceCEO
1. Select the computer you will use to develop, debug and test your application that uses ServiceCEO

API Web Service. This computer should be a stand-alone, development machine.

2. Install the ServiceCEO client and database server using either the blank or demo database. See
ServiceCEO’s installation guide for more information

3. Run the ServiceCEO client on the development computer to ensure it is functioning properly.

Optional:

4. Create a backup of your main ServiceCEO production database.

5. Restore the backup on the development machine.

Caution:
NEVER connect ServiceCEO on the API development machine to your main production
server during development, debugging and testing phases.

You’re now ready to install and setup the ServiceCEO API Web Service!

4

Appendix C: Deployment Considerations

Installing and Configuring the ServiceCEO API Web
Service

Caution:
IIS must be installed before either .NET Framework 2.0 or VB.NET Express. If the order is
reversed, a number of error messages such as “Failed to access IIS metabase” may appear. To
fix this error, you need to go to Add/Remove programs, select .NET Framework 2.0, click the
“Change/Remove” button and select “Repair”. Follow all prompts.

The ServiceCEO API Web Service acts as an intermediary between your application and ServiceCEO’s
data and business logic. Follow these steps to install and configure the ServiceCEO API Web Service:

1. Download and extract ServiceCEO_API_Setup.zip. This compressed file contains the following
separate files:

ServiceCEOAPI.exe. This file installs the ServiceCEO API Web Service.

ServiceCEO API WebService.chm. This is a help file that contains all the Entities and
Operations in detail.

CEOHelper.vb and CEOHelper.cs. These two helper classes contain a few common
methods that can be helpful when using the API that you can add to your project.

Note:
The web service files must be extracted from the compressed file using a file compression tool.

2. Double-click the ServiceCEOAPI.exe file.

3. Click Next. The license agreement screen appears.

4. Select the Accept option button.

5. Click Next. The Select Installation screen appears.

6. Click Next. The Confirm Installation screen appears.

7. Click Next. The installation starts. When the process is completed, a dialogue box appears,
informing you of the successful outcome.

The Web.Config File

By default the ServiceCEO Web Service will connect to the same database that your ServiceCEO Client is
contacted to (using the DNS settings).

If this Server Name and Database Name is not correct for your development environment, you will need to
alter the web service’s web.config file:

1. Navigate to the virtual directory where the ServiceCEO API Web Service was installed. This
directory is C:\Inetpub\wwwroot\InsightDirect.ServiceCEO.Services.

2. Edit the web.config file in this directory. You can use Visual Studio, or just about any text editor
(Notepad or Wordpad, for example).

3. To point the web service to the Server Name and Database Name of your choosing, you need to
edit the Connection Strings settings. Find this section in the web.config file:

5

Appendix E: ServiceCEO 6.2

<connectionStrings>

<add name="NA1" connectionString="Database=UseDSNDB; Server=UseDSNServer;
UID=insight; PWD=SECRET;" providerName="System.Data.SqlClient" />

</connectionStrings>

a. You will only be editing the portions after “Database=”and “Server=”. Enter the name of
your server and database in the appropriate areas:

<connectionStrings>

<add name="NA1" connectionString="Database=[ENTER DB NAME]; Server=[ENTER
SERVER NAME or IP]; UID=insight; PWD=SECRET;"
providerName="System.Data.SqlClient" />

</connectionStrings>

Caution:
NEVER connect ServiceCEO on the API development machine to your main production
server during development, debugging and testing phases. Using the section option and
changing your client’s database connection to your main production server will cause the web
service to be connected to that computer!

4. Save and close the web.config file.

Build Your First Application
To build an application, you need to:

o Create a Visual Studio Project with a Web Reference to the ServiceCEO API Web Service

o Write the Code for the Project

Creating a Visual Studio project with a Web Reference to the
ServiceCEO API Web Service
Add a web reference to the ServiceCEO API Web Service by following these steps:

1. Open Visual Studio and create a new C# Windows application. (Note: you can use Visual Basic to
do this, but the code sample below is in C#.)

6

Appendix C: Deployment Considerations

2. On the Project menu, select Add Web Reference.

3. Click on the “Web services on the local machine” link.

4. Click on the ServiceCEOWebService link.

7

Appendix E: ServiceCEO 6.2

5. In the web reference name box, type CEO. This is the namespace you will use for the web
reference.

6. Click Add Reference. The web reference is added to Web References section of your Solution
Explorer.

8

Appendix C: Deployment Considerations

Writing the Code

This section describes how to write the code for your application.

Before you begin:

Create a new Windows Forms project in Visual Studio 2005. Using the default form provided to you by
Visual Studio (typically named Form1), add a button called Button1 and a DataGridView named
grdCustomers. Double-click Button1 to get to the button’s click event:

protected void Button1_Click(object sender, EventArgs e)

Here’s a VB Sample:

' Step #1 Create web service object
Dim ws As CEO.ServiceCEOWebService = New CEO.ServiceCEOWebService()

' Step #2 Pass in authentication to web service. First you need to enter the user name
and pw in a soap header
ws.WebServiceSoapHeaderValue = New CEO.WebServiceSoapHeader()
ws.WebServiceSoapHeaderValue.Username = "administrator"
ws.WebServiceSoapHeaderValue.Password = "administrator"

' Step #3 Create a Query Object that returns just corporate customers
Dim custquery As CEO.CustomerQuery = New CEO.CustomerQuery()
custquery.IsCorporate = True

' Step #4 Call the webservice and pass in the query
Dim results() As CEO.DataItem = ws.Retrieve(custquery)

' Step #5 Add columns to the grid
grdCustomers.Columns.Add("name","Name")
grdCustomers.Columns.Add("primaryContact", "Primary Contact")

' Step #6 Add a new row for each customer in the list
Dim cust As CEO.Customer
For Each cust In results

grdCustomers.Rows.Add(cust.AccountName,
 cust.Locations(0).Contacts(0).Name.First + " " +
cust.Locations(0).Contacts(0).Name.Last)
Next

Here’s a C# Sample:

// Step #1 Create web service object
CEO.ServiceCEOWebService ws = new CEO.ServiceCEOWebService();

// Step #2 Pass in authentication to web service. First you need to enter the user
name and pw in a soap header
ws.WebServiceSoapHeaderValue = new CEO.WebServiceSoapHeader();
ws.WebServiceSoapHeaderValue.Username = "administrator";
ws.WebServiceSoapHeaderValue.Password = "administrator";

// Step #3 Create a Query Object that returns just corporate customers
CEO.CustomerQuery custquery = new CEO.CustomerQuery();
custquery.IsCorporate = true;

// Step #4 Call the webservice and pass in the query
CEO.DataItem[] results = ws.Retrieve(custquery);

// Step #5 Add columns to the grid
grdCustomers.Columns.Add("name", "Name");
grdCustomers.Columns.Add("primaryContact", "Primary Contact");

// Step #6 Add a new row for each customer in the list
foreach (CEO.Customer cust in results)
{

9

Appendix E: ServiceCEO 6.2

grdCustomers.Rows.Add(cust.AccountName,
cust.Locations[0].Contacts[0].Name.First + " " +

cust.Locations[0].Contacts[0].Name.Last);
}

Once the code is completed, you can run it by pressing F5. Click Button1, and in a few seconds (or minutes
depending on the size of the database) a list of all the corporate customers in your database will appear in
the grid. Congratulations - you have just written your first ServiceCEO API application!

10

Appendix C: Deployment Considerations

ServiceCEO API Web Service Concepts
Note:
This section expects that you have a basic familiarity with Object Oriented Programming.

“Classic” vs. “API”
The web service you are consuming is generated from a different, more modern code base than the current
ServiceCEO application. In addition to its current use as an API, this new code base will power future
generations of ServiceCEO products. To that end, while working on the new code we’ve taken the
opportunity to remodel certain aspects of the application.

For example, in the current ServiceCEO application, henceforth referred to as “Classic”, some jobs are
projects (jobs with multiple visits) and some jobs are not (one time jobs). In the API, and thus in future
products, we’ve elected to remodel this so that all jobs have the potential to have multiple visits. In order to
allow the API to interoperate with the Classic product, which still needs to differentiate, the API Job object
has a property called ClassicJobType which determines whether it is a project or a one-time job.

Note:
Throughout the remaining documentation and code samples you will see “Classic” referring to
the current generation ServiceCEO product. Any associated interoperability issues will be
identified in a similar manner.

DataItem Base Class
A DataItem is an abstract base class representing any record in the ServiceCEO database, such as jobs,
customers, tasks or users. Almost all ServiceCEO entities that you will touch derive from DataItem, and
inherit some simple properties like:

ID – A unique identifier for this record. Uniqueness is only guaranteed across a single concrete
entity type. For example, there is only one Customer with ID “1”, but there may also be an
Employee with ID “1”.

See the section “Working with DbKey” for additional information on IDs.

RecTimestamp – A byte array which is changed by SQL Server every time the record is saved.
This can be used while synchronizing records, to detect whether the data has changed since it was
last retrieved.

CreatedBy, DateCreated, LastEditedBy, DateLastEdited – The date, time
and user who created or last modified the record.*

The Classic client does not support these fields on all object types, therefore the values will not
always be updated if a user changes a record using the client application.

Top-Level DataItems vs. Owned DataItems

All entities belong to one of two categories:

1. Top-Level DataItems

a. Examples: Customer, Job

11

Appendix E: ServiceCEO 6.2

b. Top Level Data Items represent the unit of work for modifying data, and usually for
retrieving data as well. For example, a CustomerLocation can not be directly saved
to ServiceCEO using the API. Instead, it must be placed within the
Customer.Locations list, and the entire Customer must be saved.

2. Owned DataItems

a. Examples: CustomerLocation, ScheduledService

b. Owned DataItems can generally only exist inside other DataItems.

c. When an Owned DataItem’s part record is deleted, all Owned DataItems are also
deleted. For example, if you delete a Customer, all CustomerLocations are
implicitly deleted as well.

References
The term “reference” is used to describe two objects which are related to one another, but not in an
ownership scenario, where one has direct control over the other. For example, a CustomerLocation is
said to “reference” a Zone.

This relationship could be exposed in the API as a simple property, CustomerLocation.ZoneID,
leaving API consumers to query for additional information about the Zone, such as its name, on their own.
In many cases, we’ve attempted to increase API usability beyond this simple property, by using a complex
ReferenceField(Of T) data type.

Thus, CustomerLocation.Zone in the API is declared as CEO.ReferenceFieldOfZone, which exposes the
ZoneID, through CustomerLocation.Zone.ReferencedID, but also gives the user access to a
short string describing the Zone, through CustomerLocation.Zone.FriendlyString.

Login
To access a ServiceCEO database, you must supply a valid user name and password. However, the API
does not currently implement user rights, so, as long as a valid username and password are provided, users
will be able to perform all functions, regardless of the actual user permissions that may have been defined
in the ServiceCEO Security Options dialog box. In future releases of the API, security will be applied based
upon the rights of the specific user logging in.

Querying the ServiceCEO API Web Service
The web service exposes only two methods. The first method, Retrieve, obtains entities from
ServiceCEO. This method takes an instance of a Query object as a parameter. For instance, if we want to
retrieve jobs we would pass in a JobQuery object or to retrieve Customer objects, we would supply a
CustomerQuery.

Every Query class has some number of properties which are used to cooperatively filter the objects
returned (supplying multiple filters will execute in a logical AND fashion). Filtering properties take on
many different types: integer, string, Boolean, DBKey, and other object types. Remember, because of the
nature of the web-service, object types will not be instantiated. You will need to create instances of these
types but only if you wish to filter on them.

When you do not wish to include a filter property in the operation, you only need to set it to a null value:
String.Empty for strings, DBKey.Empty for ID values and null for all other objects. If a primitive
value would result in an ambiguous filter (did I mean False, True or “don’t include”?), we have wrapped
those in a Nullable<T> construct. A good rule of thumb is that unless you specifically set a filter property,
you can assume that it will NOT be included in the operation.

12

Appendix C: Deployment Considerations

Date Range Query

Potentially one of the most important querying objects you will need to use is the
DateRangeQueryParameter. You will use this any time you want to return objects of a time specific
nature.

DateRangeQueryParameter objects use two Nullable<DateTime> properties to establish a
window in time. These are the aptly named the GreaterThanEqual and LessThan properties. If a
property is left null, then that portion of the equation is omitted. This allows filtering on a limited range
(both limits supplied) or an unlimited range (either limit left null). If you leave both values null, you have
effectively instructed the operation to ignore this filter entirely

Remember you can never really discount the time. If you want “everything for today” you must set the
time portions of to midnight of today (GreaterThanEqual) to midnight tomorrow (LessThan).

Example

Here is an example of how we might retrieve all Job objects scheduled for today.

1. Declare a variable specific to the object being retrieved:

Dim query As New CEO.JobQuery

2. Set the ServiceDate filter to reflect that we are only interested in a certain window in time.

query.ServiceDate = New DateRangeQueryParameter()

DateTime dt = DateTime.Today.Date

query.ServiceDate.GreaterThanEqual = dt

query.ServiceDate.LessThan = dt + New TimeSpan(24, 0, 0);

3. Declare a variable for the web service proxy, leveraging the CEOHelper method to configure
authentication:

Using ws As CEO.ServiceCEOWebService =
CEOHelper.GetProxy("administrator", "administrator")

4. Declare a variable to hold the results of the retrieve, which is an array of type DataItem:

Dim results() As ServiceCEOAPI.DataItem

5. Pass the Query object into the retrieve method of the web service object and set it equal to the
results object:

results = ws.Retrieve(query)

The signature of the Retrieve web method specifies that it returns an array of DataItem objects. While
iterating over the items in this array we can cast them to the specific type of object that we queried. For
example, if we retrieved some jobs, cast them in this way:

For Each job As CEO.Job In results

' Do something here.

Next

13

Appendix E: ServiceCEO 6.2

When setting mutiple properties on a query object, the API will query the database using “And” to join the
properities (as opposed to or). For example, this job query instructs the API to retrieve every job for today
AND has a status of Completed:

query.ServiceDate.GreaterThanEqual = Date.Today

query.ServiceDate.LessThan = Date.Today

query.Status = CEO.JobWorkStatus.Active

New, Save, Modify and Delete Operations
The second method exposed by the web service is DoOperation. Operations can be broken down into
the following groups:

1. New Operations which will:

a. Create a new top-level DataItem in memory (without writing it to the database)

b. Set unique ID values for the object and any objects contained therein

c. Return the object to the caller for further manipulation

d. Example: CustomerNewOperation

2. Save Operations which will:

a. Take as input a top-level DataItem object (example: Customer) which represents either
a new record or an existing record in the database

b. Write the input DataItem, as well as any owned DataItems (example:
CustomerLocations), to the database

c. Return a duplicate of the input object, containing the latest values written to the database,
including the latest LastEdited timestamps, along with any ID values generated for
new records

d. Example: CustomerSaveOperation

3. Delete Operations which will delete records corresponding to the input DataItem, as well as any
owned DataItems.

a. Example: CustomerDeleteOperation

4. Modify Operations which:

a. Take as input a top-level DataItem

b. Modify the input DataItem in some way

c. Return the resulting, modified, top-level DataItem

d. Example: JobAddEmployeeOperation

Note that adding a new owned DataItem somewhere inside of a top-level DataItem is
considered a Modify Operation, rather than a New Operation, since we are modifying the top-level
item by adding a new item inside of it

Operations themselves are objects (which derive from OperationBase) which you instantiate and then
configure using properties.

14

Appendix C: Deployment Considerations

Setting Up and Executing an Operation

This section will walk you through setting up and executing an operation. This code sample below will
configure and execute a JobSaveOperation.

1. Declare a variable specific to the object that is being saved:

Dim saveOperation As New CEO.JobSaveOperation()

2. Set the Input property of the save operation equal to the object you are saving (the job variable
referenced here would have been obtained earlier, through a call to the Retrieve web method):

saveOperation.Input = job

3. Get a web service proxy object:

Using ws As CEO.ServiceCEOWebService =
CEOHelper.GetProxy("administrator", "administrator")

4. Declare a variable to hold the results of the operation, which is always of type
OperationResult:

Dim saveResult As CEO.OperationResult

5. Pass the Operation object into the DoOperation method of the web service object and set it
equal to the results object:

saveResult = ws.DoOperation(saveOperation)

Operation Results
The OperationResult class has a few important properties:

Success (saveResult.Success)- A Boolean property. If true, the operation did what you
asked it to do. If false, it did not. For performance reasons, many instances of operation failure do
NOT throw an exception, and instead return Success as false. Examples of Success = false
include:

o Required fields missing.

o You tried to edit a record which is not editable, like a completed Job.

In many cases, the code you write may want to abort processing if an unsuccessful
OperationResult is encountered. If this is the case, instead of manually checking the Success
property, you can call CEOHelper.AssertSuccess(), which will throw an Exception if a
failure was encountered. This will ensure that your application’s flow stops immediately.

15

Appendix E: ServiceCEO 6.2

Validation Issues (saveResult.ValidationIssues) Returns zero or more Prompt
objects, each representing an issue that was encountered during the operation. Typically this array
will be empty, unless Success was returned as false. To prevent the return of non-critical
(informational) Validation Issues, you can set the operation object’s LightValidation
property to true before calling DoOperation.

The Prompt data type has properties that allow user interaction. For example, a Prompt could be
returned while saving a job, with its Message property reading “There is a scheduling conflict for
the team you’ve selected. Would you like to save anyway?” This message could be presented to
the user.

Any New, Modify or Save Operation will return to the caller an updated copy of the object passed as input
as part of the OperationResult.ResultItem. It does not update the original object passed as input
to the operation.

Since different types of operations will return different types of data (and some will return multiple types of
data), you will need to cast the basic OperationResult.ResultItem class to a more specific data
type in order to obtain the updated object.

In summary, it’s wise to do the following after EVERY DoOperation call:

1. Check for OperationResult.Success, possibly using CEOHelpers.AssertSuccess.

2. As long as Success = True, cast your OperationResult to a specific type. For example,
CustomerAddLocationOperation will return a
OperationSingleResultOfCustomer. This class derives from OperationResult, but
adds properties that enable the result to also contain a single Job object.

3. Overwrite your old input variable with the result of the last web service call.

These steps look like this in VB.NET:

' Execute an operation using local variable ‘customer’ as input
Dim newLocOp As New CEO.CustomerAddLocationOperation
newLocOp.Input = customer
newLocOp.PostalCode = "90210"
Dim results As CEO.OperationResult = ws.DoOperation(newLocOp)

' If it failed, something unexpected happened and we want to stop
processing.
CEOHelper.AssertSuccess(results)

' Overwrite the local customer variable w/ the results.
' It’s safe to DirectCast here, because we know results.Success =
True.
customer = DirectCast(results,
CEO.OperationSingleResultOfCustomer).ResultItem

Similarly, when calling a Save Operation, it’s important to use the ResultItem property. For example,
saving a Job will assign any new charges on that Job an ID that identifies the new record in the database. In
addition, the LastEditedBy and DateLastEdited fields for all modified objects will be updated.

Working With DbKey
Every DataItem has an ID property is encapsulated inside an object called a DbKey. This is an
implementation detail that will help us adapt a more modern database schema in the future The DbKey

16

Appendix C: Deployment Considerations

object requires some special handling in your code. Specifically, you will always access the DbKey’s
underlying value, which is a string, rather than the DbKey itself:

Example: Customer.ID.Value = “123”

Any new object which has not been saved to the database yet will be assigned a DataItem.ID.Value
containing a Globally Unique Identifier (GUID). This value will be used until the object is saved to the
database, at which point it will be replaced by the newly generated ID value from the database.

Comparisons

Take special care when comparing two DbKeys. Two DbKey instances that have the same DbKey.Value
will NOT be equal in code (e.g., “customer1.ID = customer2.ID”) because, although the
underlying values are the same, they are contained in two different DbKey objects. With this in mind, you
should compare the underlying values rather then the IDs (e.g., “customer1.ID.Value =
customer2.ID.Value”).

Multi-Keys

In certain instances, the API has modeled entities differently than they were in Classic so that a single
logical item might be stored in multiple database tables. In these cases, a special DbKey.Value string
may be assembled containing multiple values from the actual database tables, separated by periods.
Example: “123.345.567.857”.

Jobs are one of these instances. They have a 4 parts to a Job ID in the API. Here is the break down:

ScheduleID.OrigSchedID.JobID.BatchJobID

Every Job saved to the database will have both a ScheduleID and JobID. OrigSchedID is used to
track “offshoots” of schedules (recurring jobs) and BatchJobID is used to track projects in Classic.
More information about each of these fields can be found in ServiceCEO’s database documentation.

Jobs
Three types of jobs exist in Classic:

1. One-time jobs

2. Recurring jobs (a schedule; a job that recurs)

3. Projects (a job that requires multiple visits)

In the API, this has been remodeled. Every Job in the API contains one or more Visit objects. Thus, when
you retrieve a one-time job in the API, it looks like a Classic project, even though it is not. Along these
lines, when you save the job record using the API, it will be saved as a one-time job in Classic, even though
it looks like a project. If you attempt certain edits to that one-time job that can’t be stored as a one-time job
in Classic, the save operation will fail (a Prompt object will let you know what you did wrong). To see how
a retrieved Job is stored in the Classic database, you can check its ClassicType property of a Job.

Schedules
In the current version of the ServiceCEO API Web Service, recurring jobs are not supported. You can open
a single occurrence of a recurring job, and you can edit and save it, but you can not create a new schedule,
or edit an entire schedule at once. Similarly, you cannot open or create an Estimate for recurring service.
These features will be available in a future version.

Estimates
In Classic, an estimate can be created for a one-time job, recurring job or a project. At this time however
the API only supports estimates for one-time jobs and projects through the JobEstimate. This class is a

17

Appendix E: ServiceCEO 6.2

wrapper of the Job class. JobEstimate.Contents has all the same properties as the Job class. Any
operations that can be preformed on Job can also be preformed on JobEstimate.Contents. Through
the API Estimates can be created and updated but, at this time, they can not be won or lost.

Job Status
Note that the way Job Status is handled in the API is a bit different then Classic. The JobWorkStatus
enumeration is used by both Jobs, Visits and Estimates. Supported statuses include:

Active

Cancelled

Completed

LostEstimate

OpenEstimate

WonEstimate

Unknown

Please note that “Pending” status is no longer supported. Any jobs in Classic that have a status of pending
will have a JobWorkStatus of Active in the API. When retrieving records using the API, you can use the
“Active” JobWorkStatus to retrieve pending Jobs/Estimates.

The changing of Job or Estimate Status is currently not supported.

Telephone Types
In Classic there are ten different phone types: Home1, Home2, Work1, Work2, Fax, Business Fax, Mobile,
Car, Other, Other2. These types have been simplified in the API and have been narrowed down to just five
types: Home, Work, Fax, Mobile and Unknown. Any phone number in Classic that has the type of Home1
or Home2 will have a type of Home in the API. Work1 and Work2 will be Work, Fax and Business Fax will
be Fax, Mobile will be Mobile and all others will be Unknown.

NewLines
In Windows systems, the new line consists of a carriage return character followed by a line feed character.
In Visual Basic 6, this is accessed by vbCrLf constant. In C#, the recommended way to represent a
newline is via Environment.NewLine constant, although a string literal “\n\r” can be used as well.

In Microsoft web services, if a multi-line string is returned through a web service, the \n\r is automatically
replaced by a single \n. This can negatively affect the display of text spanning multiple lines. To remedy
this problem, replace all instances of \n in a string with Environment.NewLine before displaying them
to the user. We have provided a helper function (CEOHelper.EnsureCrLf) to assist you with this.

Backward Compatibility
The ServiceCEO API is an evolving product that will change over time with releases of new code. As new
versions of the API are made available, the types and methods used in the web services may change. Until
the API is stabilized, Insight Direct will NOT guarantee backward compatibility.

18

Appendix C: Deployment Considerations

Appendix A: Recommended Reading
Web Services Basics:
http://msdn.microsoft.com/webservices/webservices/understanding/webservicebasics/default.aspx

Introducing Microsoft Visual Basic 2005 for Developers:
http://msdn.microsoft.com/vbrun/staythepath/additionalresources/introto2005/

How to Consume a Web Service Using Visual Basic or Visual C#:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vsent7/html/vbwlkwalkthroughusingwebservicewithmanagedcode.asp
Note that some of the step-by-step instructions are invalid for Visual Studio 2005, so review this
page for general process information only.

19

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vbwlkwalkthroughusingwebservicewithmanagedcode.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vbwlkwalkthroughusingwebservicewithmanagedcode.asp
http://msdn.microsoft.com/vbrun/staythepath/additionalresources/introto2005/
http://msdn.microsoft.com/webservices/webservices/understanding/webservicebasics/default.aspx

Appendix E: ServiceCEO 6.2

Appendix B: Sample Code - Job Creation
In the two samples below (one for VB.Net and one for C#) create a new Job with one service that is saved
to the database.

VB.Net

Public Function CreateTestJob() As CEO.Job
 Using ws As CEO.ServiceCEOWebService = CEOHelper.GetProxy("administrator",
"administrator")
 ' Step #1 - Query for the customer that the job is for.
 ' In this example Customer ID is 123
 Dim queryCust As New CEO.CustomerQuery()
 queryCust.PrimaryID = CEOHelper.DbK(123)
 Dim resultsCust As CEO.DataItem()
 resultsCust = ws.Retrieve(queryCust)
 ' Step #2 - Cast the Query result into a customer object
 Dim customer As CEO.Customer = DirectCast(resultsCust(0), CEO.Customer)
 ' Step #4 - Use the operation to create a new job
 Dim newJob As New CEO.JobNewOperation()
 newJob.Customer = customer
 newJob.ServiceLocationID = customer.Locations(0).ID
 newJob.Type = CEO.ClassicJobType.JobOccurence
 Dim resultsNewJob As CEO.OperationSingleResultOfJob =
DirectCast(ws.DoOperation(newJob), CEO.OperationSingleResultOfJob)
 ' Step #5 - Cast the result into a job object
 Dim job As CEO.Job = DirectCast(resultsNewJob.ResultItem, CEO.Job)
 ' Step #6 - Set Job and visit properties
 job.Subject = "Test Job"
 Dim setDuration As New CEO. JobSetDurationOperation()
 setDuration.Input = job
 setDuration.NewValue = 150
 setDuration.VisitID = job.Visits(0).ID
 resultsNewJob = DirectCast(ws.DoOperation(setDuration),
CEO.OperationSingleResultOfJob)
 Dim setStartTime As New CEO. JobSetVisitStartOperation()
 setStartTime.Input = job
 setStartTime.VisitID = job.Visits(0).ID
 setStartTime.NewStart = DateTime.Now.AddDays(2)
 resultsNewJob = DirectCast(ws.DoOperation(setStartTime),
CEO.OperationSingleResultOfJob)
 job.Visits(0).ArrivalWindowMinutes = 150
 job.Visits(0).IsOnPickList = True
 job.Visits(0).WorkOrderNotes = "WO Notes for new job"
 job.Visits(0).InvoiceNotes = "Invoice Notes for new job"
 job.Visits(0).PrivateNotes = "Private Notes for new job"
 job.Visits(0).UserFields(0) = "Custom Field"
 ' Step #7 - Use operation to save new job to database
 Dim jobSave As New CEO.JobSaveOperation()
 jobSave.Input = job
 resultsNewJob = DirectCast(ws.DoOperation(jobSave),
CEO.OperationSingleResultOfJob)
 ' Step #8 - Check to make sure the save happened without error
 CEOHelper.AssertSuccess(resultsNewJob)
 ' Step #9 - Cast result into the job object
 job = DirectCast(resultsNewJob.ResultItem, CEO.Job)
 ' Step #10 - Add a service ID 231 to the job using operation
 Dim addSerice As New CEO.JobAddVisitServiceOperation()
 addSerice.Input = job
 addSerice.Master = New CEO.NullableReferenceFieldOfMasterService()
 addSerice.Master.ReferencedID = CEOHelper.DbK(231)
 addSerice.VisitID = job.Visits(0).ID
 resultsNewJob = DirectCast(ws.DoOperation(addSerice),
CEO.OperationSingleResultOfJob)
 CEOHelper.AssertSuccess(resultsNewJob)
 job = DirectCast(resultsNewJob.ResultItem, CEO.Job)
 ' Step #11 - Save the Job
 jobSave.Input = job

20

Appendix C: Deployment Considerations

 resultsNewJob = DirectCast(ws.DoOperation(jobSave),
CEO.OperationSingleResultOfJob)
 CEOHelper.AssertSuccess(resultsNewJob)
 job = DirectCast(resultsNewJob.ResultItem, CEO.Job)

 Return job
 End Using

 End Function

C#

public CEO.Job CreateTestJob()
{

 using(CEO.ServiceCEOWebService ws = CEOHelper.GetProxy("administrator",
"administrator"))
 {
 // Step #1 - Query for the customer that the job is for.
 // In this example Customer ID is 123
 CEO.CustomerQuery queryCust = new CEO.CustomerQuery();
 queryCust.PrimaryID = CEOHelper.DbK(123);
 CEO.DataItem[] resultsCust;
 resultsCust = ws.Retrieve(queryCust);
 // Step #2 - Cast the Query result into a customer object
 CEO.Customer customer = (CEO.Customer)resultsCust[0];
 // Step #4 - Use the operation to create a new job
 CEO.JobNewOperation newJob = new CEO.JobNewOperation();
 newJob.Customer = customer;
 newJob.ServiceLocationID = customer.Locations[0].ID;
 newJob.Type = CEO.ClassicJobType.JobOccurence;
 CEO.OperationSingleResultOfJob resultsNewJob =
(CEO.OperationSingleResultOfJob)ws.DoOperation(newJob);
 // Step #5 - Cast the result into a job object
 CEO.Job job = (CEO.Job)resultsNewJob.ResultItem;
 // Step #6 - Set Job and visit properties
 job.Subject = "Test Job";
 CEO.JobSetDurationOperation setDuration = new CEO.JobSetDurationOperation();
 setDuration.Input = job;
 setDuration.NewValue = 150;
 setDuration.VisitID = job.Visits[0].ID;
 resultsNewJob = (CEO.OperationSingleResultOfJob)ws.DoOperation(setDuration);
 job = (CEO.Job)resultsNewJob.ResultItem;
 CEO.JobSetVisitStartOperation setStartTime = new CEO.JobSetVisitStartOperation();
 setStartTime.Input = job;
 setStartTime.VisitID = job.Visits[0].ID;
 setStartTime.NewStart = DateTime.Now.AddDays(2);
 resultsNewJob = (CEO.OperationSingleResultOfJob)ws.DoOperation(setStartTime);
 job = (CEO.Job)resultsNewJob.ResultItem;
 job.Visits[0].ArrivalWindowMinutes = 150;
 job.Visits[0].IsOnPickList = true;
 job.Visits[0].WorkOrderNotes = "WO Notes for new job";
 job.Visits[0].InvoiceNotes = "Invoice Notes for new job";
 job.Visits[0].PrivateNotes = "Private Notes for new job";
 job.Visits[0].UserFields[0] = "Custom Field";
 // Step #7 - Use operation to save new job to database
 CEO.JobSaveOperation jobSave = new CEO.JobSaveOperation();
 jobSave.Input = job;
 resultsNewJob = (CEO.OperationSingleResultOfJob)ws.DoOperation(jobSave);
 // Step #8 - Check to make sure the save happened without error
 CEOHelper.AssertSuccess(resultsNewJob);
 // Step #9 - Cast result into the job object
 job = (CEO.Job)resultsNewJob.ResultItem;
 // Step #10 - Add a service ID 231 to the job using operation
 CEO.JobAddVisitServiceOperation addSerice = new CEO.JobAddVisitServiceOperation();
 addSerice.Input = job;
 addSerice.Master = new CEO.NullableReferenceFieldOfMasterService();

21

Appendix E: ServiceCEO 6.2

 addSerice.Master.ReferencedID = CEOHelper.DbK(231);
 addSerice.VisitID = job.Visits[0].ID;
 resultsNewJob = (CEO.OperationSingleResultOfJob)ws.DoOperation(addSerice);
 CEOHelper.AssertSuccess(resultsNewJob);
 job = (CEO.Job)resultsNewJob.ResultItem;
 // Step #11 - Save the Job
 jobSave.Input = job;
 resultsNewJob = (CEO.OperationSingleResultOfJob)ws.DoOperation(jobSave);
 CEOHelper.AssertSuccess(resultsNewJob);
 job = (CEO.Job)resultsNewJob.ResultItem;

 return job;
 }

}

22

Appendix C: Deployment Considerations

Appendix C: Deployment Considerations

Data Security Considerations
The following best practices should be followed to ensure data security.

If you are developing web pages to access ServiceCEO data, you should either:

o Host the web service on a separate machine from the one servicing your web pages. This
separate machine should be behind a firewall so it cannot be accessed via the Internet.

o If you must host the web service on the same machine hosting your web pages, secure the
web service folder in Internet Information Services (IIS) so it cannot be accessed by
remote IP Addresses.

If you are developing a Windows Forms (thick client) application to access ServiceCEO data, you
should either:

o Ensure that the application is run on your LAN only, so that unencrypted traffic between
your application and the web service is not sent over the Internet. In this scenario, you
should ensure that the machine hosting the web service is behind a firewall so it cannot
be accessed via the Internet.

o If you must run your application outside of your LAN, you should either:

 Place the machine hosting the web service behind a firewall, and use a Virtual
Private Network (VPN) to connect the remote machine to your local network.

 Expose the machine hosting the web service to the Internet on the HTTPS port
only, leveraging IIS encryption and a security certificate.

If you have any questions, please post them on the Discussion Boards.

Appendix D: Getting Help
The ServiceCEO API is support through the Insight Direct Discussion Boards API Forum:
http://ws5.insightdirect.com/IDBB/forum.asp?FORUM_ID=54

If you have any problems, have questions or have found a bug in the API please post in this forum and our
developers will work with you to answer your questions and resolve any problems.

The first time you access the Discussion Boards you will need to log into the Member Center first at
http://www.insightdirect.com/member-login/

23

http://ws5.insightdirect.com/IDBB/forum.asp?FORUM_ID=54

Appendix E: ServiceCEO 6.2

Appendix E: ServiceCEO 6.2
The following updates have been made to the API in support of version 6.2. Details on the new features in
ServiceCEO 6.2 can be found here: http://support.insightdirect.com/release/6-2_releasenotes/

Custom Fields
UserField is now an array of strings, you now longer have to set the value property.

In 6.1

job.Visits[0].UserFields[0].Value = "something";

Now in 6.2:

job.Visits[0].UserFields[0] = "something";

Job Contacts
The default Job contact can be set on a job or visit level

job.DefaultContact.ReferencedID = customer.Locations[0].Contacts[0].ID;

Customer Alerts
Gone are the HasCreditIssues and IssueAlert properties of a customer. In there place is an Alert property
that can be used to set Credit Limit, Past Due and Manual Alerts

customer.Alerts.CreditLimitAmount = 100;
customer.Alerts.IsEnabled[(int)CEO.CustomerAlertType.CreditLimit] =
true;

customer.Alerts.PastDueDays = 5;
customer.Alerts.IsEnabled[(int)CEO.CustomerAlertType.PastDue] = true;

customer.Alerts.ManualAlertMessage = "Do not Service!";
customer.Alerts.IsEnabled[(int)CEO.CustomerAlertType.Manual] = true;

customer.Alerts.HaltJobCreation = true;

24

http://support.insightdirect.com/release/6-2_releasenotes/

	Overview
	Target Audience
	Development System Requirements
	System Components

	The ServiceCEO API Web Service
	Abilities and Limitations
	Entities and Operations

	Getting Started
	Installing ServiceCEO
	Installing and Configuring the ServiceCEO API Web Service
	The Web.Config File

	Build Your First Application
	Creating a Visual Studio project with a Web Reference to the ServiceCEO API Web Service
	Writing the Code

	ServiceCEO API Web Service Concepts
	“Classic” vs. “API”
	DataItem Base Class
	Top-Level DataItems vs. Owned DataItems

	References
	Login
	Querying the ServiceCEO API Web Service
	Date Range Query
	Example

	New, Save, Modify and Delete Operations
	Setting Up and Executing an Operation
	Operation Results

	Working With DbKey
	Comparisons
	Multi-Keys

	Jobs
	Schedules
	Estimates
	Job Status	
	Telephone Types
	NewLines
	Backward Compatibility

	Appendix A: Recommended Reading
	Appendix B: Sample Code - Job Creation
	Appendix C: Deployment Considerations
	Data Security Considerations

	Appendix D: Getting Help
	Appendix E: ServiceCEO 6.2
	Custom Fields
	Job Contacts
	Customer Alerts

